Nano Satellite together we go further ADCS Tensor tech is leading innovation attitude determination and control systems, with expertise in guidance, navigation, and control. We offer a complementary suite of space-qualified products and subsystems based on scalable and reliable components that can adapt to our diverse customer requirements. # ADCS Integrated **Attitude Determination** And Control System Flight Heritage Since Jan. 2022 Tensor Tech's ADCS uses variable speed control moment gyroscopes (CMG) for pointing and tracking, a solution more power efficient than traditional reaction wheels. The CMG actuators are scalable and can be combined in various configurations to adapt to different mission profiles. The ADCS includes estimator and control algorithms with a wide variety of sensors for all ADCS control modes. ## together we go further ## ADCS Specifications Included Hardware Interface #### **ADCS-MTQ** ADCS MCB + MTQ1 Suite RS485 or UART CMG-10m ADCS MTQ ADCS-10m CMG-20m ADCS-20m RS485 or UART ADCS-40m FSS-15 x 5 FSS-15M x 1 | ļ | 9 | | |---|---|--| | | | | FSS-15 x 5 Main Control Board FSS-15 × 5 RS485 or UART FSS-15M x 1 FSS-15 x 5 RS485 or UART FSS-15M x 1 | Optional Accessories | GNSS Receiver | GNSS Receiver | GNSS Receiver | GNSS Receiver | |------------------------------|--------------------|---------------------------|-------------------------------|-------------------------------| | | 0.1 deg @ Sunlight | | Pointing Knowledge | 1 deg @ Eclipse | | Pointing Accuracy | 5 deg @ Sunlight | 0.2 deg @ Sunlight | 0.2 deg @ Sunlight | 0.2 deg @ Sunlight | | | ડ deg @ ડેલાnignt | 1 deg @ Eclipse | 1 deg @ Eclipse | 1 deg @ Eclipse | | Power Consumption @ 5v bus | 0.63 W | 1.2 W | 2.4 W | 4.8 W | | Power Consumption @ 3.3v bus | 0.4 W | 1 W | 1.5 W | 2.9 W | | Volume | 0.2U (< 140 g) | Tuna-can & 0.2U (< 450 g) | 2 × Tuna-cans & 0.4U (< 1 kg) | 4 × Tuna-cans & 0.8U (< 2 kg) | | Angular Momentum Storage | | 10 11 5 0 1 | 20 mNms for 1-axis; | 30 mNms for 2-axis; | | | _ | 10 mNms for 2-axis | 10 mNms for 2-axis | 20 mNms for 1-axis | | Torque | 0.01N @ 660 | 1 1 2 | 2 mNm for 1-axis; | 3 mNm for 2-axis; | | | 0.01 mNm @ SSO | 1 mNm for 2-axis | 1 mNm for 2-axis | 2 mNm for 1-axis | Installing the CMG in the tuna-can (configuration 1) is recommended, as it will maximize the available space within the satellite. It is also feasible to integrate the CMG near the center of mass of the satellite, or at any other location within the CubeSat s tructure. Tensor Tech's maximizes performance for small satellites users by miniaturizing its variable speed control moment gyroscopes (CMG). It offers additional power efficiency compared to traditional reaction wheels solutions. The CMG includes speed and torque modes, allowing users to control the CMG directly by simply setting speed or torque output values. ## together we go further ADCS # **CMG**Specifications CMG-20m CMG-40m CMG-10m is a variable speed control moment gyroscope (CMG) which is suitable for satellites up to roughly 3U. CMG-20m is a scissored pair, variable speed control moment gyroscope (CMG) which is suitable for satellites up to roughly 6U. CMG-40m is a pyramid cluster, variable speed control moment gyroscope (CMG) which is suitable for satellites up to roughly 12U. | Angular Momentum Storage | 10 mNms for 2-axis | 20 mNms for 1-axis;
10 mNms for 2-axis | 30 mNms for 2-axis;
20 mNms for 1-axis | |------------------------------------|---------------------------|---|---| | Torque | 1 mNm for 2-axis | 2 mNm for 1–axis;
1 mNm for 2–axis | 3 mNm for 2–axis;
2 mNm for 1–axis | | Inner Rotor Speed Control Accuracy | < 5 rpm | < 5 rpm | < 5 rpm | | Tilting Angle Control Accuracy | < 1 deg | < 1 deg | < 1 deg | | Rotor Imbalance | ISO 1940 G0.4 | ISO 1940 G0.4 | ISO 1940 G0.4 | | Power Consumption @ 5v bus | 1 W | 1.5 W | 3 W | | Power Consumption @ 3.3v bus | 0.6 W | 1.2 W | 2.4 W | | Mechanical | Tuna-can & 0.1U (< 290 g) | 2 x Tuna-can & 0.2U (< 580 g) | 4 × Tuna-can & 0.4U (< 1160 g) | | Interface | RS485 or UART | RS485 or UART | RS485 or UART | ## together we go further ### **FSS-15** #### Fine Sun Sensor Flight Heritage Since Jan. 2022 ➤ FSS-15M with Magnetometer ➤ FSS-15D with Higher Update Rate #### **Feature** - 1. High accuracy 2-axis digital sun sensor - 2. Low power consumption design - 3. Small form factor - 4. I2C Bus stuck protection - 5. Environmental test follows ECSS standard Field of View (FOV) ± 60 deg Accuracy 0.1 deg,1-sigma for FSS-15 & FSS-15N 2 deg, 1- sigma for FSS-15D Sampling Rate 4, 8, 16 Hz. 32 Hz for FSS-15D only Current Consumption @ 16Hz < 5.5 mA</td> Mechanical 22.00 × 15.00 × 5.26 (< 4 g)</td> Radiation Tolerance > 10 krad Interface I²C and UART Tri-Axis Magnetometer(FSS-15M only) Range: +-1100 uT, Noise: 15 nT # CSS-10 Coarse Sun Sensor CSS-10 is a coarse sun sensor with a simple and robust design. It is suitable for spacecrafts who need robust inputs for sun-acquisitions, with low pointing requirements or as a part of a more advanced solution in combination with the FSS-15 #### **Specifications** - 1-axis analog coarse sun sensor - < 5 deg (1-sigma) of sun determination accuracy calibration instructions</p> - N Hardware protection to prevent short circuit system failures - Six coarse sun sensors can provide a full sky (4π) FOV coverage (\pm 60 deg for each sensor) - Requires analog to digital converter. - Three pins including Vcc, GND, and output line. Field of View $\mid \pm 60 \text{ deg}$ Power Consumption $\mid < 0.1 \text{ mA}$ $\begin{tabular}{lll} \hline & & 15.00 \times 7.00 \times 6.00 \ mm \ (< 0.5 \ g) \\ \hline \end{tabular}$ Radiation Tolerance | > 10 krad ### ADCS - Testbed Attitude Determination Control System Testbed The ADCS testbed supports satellite missions which require advanced pointing and attitude determination capabilities, by facilitating calibration, measurements of the mass properties, and ADCS algorithms tests and validations. The testbed consists of an air-bearing platform, a triaxial Helmholtz cage, and a solar simulator. It is easily customizable and can be adapted to fit customer specific requirements. #### **Specifications** #### Triaxial Helmholtz Cage Max. Magnetic Flux Density | 3 Gauss |Working Area $| 350 \times 350 \times 350 \text{ mm} |$ #### **Air Bearing Platform** Manual Adjusted x/y Axis Platform Turbine Torque \mid 5 μNm Travel Angle \pm 45 deg; Max. load 30 kg Center of Mass Estimation Error | 0.1 mm Moment of Inertia Estimation Error | 2 % Attitude Estimation Error | 1 deg #### **Solar Simulator** | Spectral Matching | AMO, Class A, ASTM | |--|--------------------| | Spatial Non-uniformity of Total Irradiance | < 2% | | Time Instability | < 1% | | Light Spot Dimension | 40 x 40 mm | | Collimation | < 4 dea | ## together we go further ADCS ### **ADCS** #### **Air Bearing Platform** Single board computer and tactical grade inertia measurement unit (IMU) are integrated onto the air bearing platform. With the help of the IMU, the single board computer estimate the attitude of the platform every timestep. The determined attitude can be remotely accessed using the Testbed-TYF, a customer support software, to improve the robustness of the tested ADCS system. #### **Specifications** Mass Estimation Error | 10 mg Center of Mass Estimation Error | 0.1 mm Moment of Inertia Estimation Error | 2 % Attitude Estimation Error | 1 deg Space has defined some of humanity's most outstanding achievements, and it continues to shape our future today. We are motivated by the impact we can have by bringing reliable technologies to our customers, as the company's core spirit, "together, we go further." #### **Our Service** ADCS Hardware in the Loop Jitter Analysis and Measurement **ADCS** Integration Processor in the Loop **AOCS Performance Analysis** Original Equipment Manufacturing Mass Properties Measurement Original Design Manufacturing ### ADCS together we go further tensortech.co info@tensortech.co sales@tensortech.co copyright © 2023. tensor tech co., ltd. all right reserved.